
Int’l J. of Aeronautical & Space Sciences, Vol. 11, No. 1, March 2010                                     31 

 

pISSN:2093-274x eISSN:2093-2480 

DOI:10.5139/IJASS.2010. 11. 1.031 

 

Motion and Structure Estimation Using Fusion of Inertial and 

Vision Data for Helmet Tracker  

 

 

Sejong Heo*, Ok shik Shin* and Chan Gook Park** 

School of Mechanical and Aerospace Engineering Institute of Advanced Aerospace Technology, 

Seoul National University, Seoul, 151-744, Korea 

 

Abstract 

For weapon cueing and Head-Mounted Display (HMD), it is essential to continuously estimate 

the motion of the helmet. The problem of estimating and predicting the position and orientation of the 

helmet is approached by fusing measurements from inertial sensors and stereo vision system. The 

sensor fusion approach in this paper is based on nonlinear filtering, especially expended Kalman 

filter(EKF). To reduce the computation time and improve the performance in vision processing, we 

separate the structure estimation and motion estimation. The structure estimation tracks the features 

which are the part of helmet model structure in the scene and the motion estimation filter estimates 

the position and orientation of the helmet. This algorithm is tested with using synthetic and real data. 

And the results show that the result of sensor fusion is successful.  
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Introduction 

Due to the complexity of the avionic system 

with modern high techniques, aircraft pilots face a 

problem in that the pilots don‟t concentrate on 

attacking targets in battles or control the aircraft. 

Many technologies have been developed to solve 

this problem. If a pilot can control the targeting 

system or the avionic system without seeing the 

control panel, the pilot can greatly improve his 

capability to focus on the problem at hand. In this 

case, the key solution of this problem is to 

estimate the motion of the pilot, especially the 

motion of the pilot‟s head. The helmet tracker 

system has been developed to estimates the 

motions of a head in military of pilot‟s head, we can 

estimate the line of sight more exactly. As a result, 

the helmet tracker is very useful not only in  

 

 

 

military fields, such as a weapon cueing system, 

but also in the fields of augmented reality such as 

head-mounted display[1]. 

The vision sensors are used successfully for 

this kind of tracking problems. But they are 

restricted to a small acceleration and rotation. On 

the other hand, inertial sensors are widely used for 

tracking rapid motion. But they suffer from the 

accumulated error with time, because of the double 

integration performed to compute the position. The 

fusion of inertial and vision sensors enables to 

make the helmet tracker system which is able to 

estimate the position and orientation of the helmet 

with long term stability, due to the periodic 

correction from the vision system and to track the 

rapid motion successfully, due to the properties of 

inertial sensors. 

The combination of vision and inertial 

sensors has been used previously in mobile 

robot ics , computer v is ion and augmented 

reality .The most popular solution is the EKF. The 

disadvantage of the EKF is that the computational 

load is very heavy, if the nonlinearity of the 

system is severe. Because of the high nonlinearity 

of the vision system, our previous helmet tracker 
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system suffers from high computational 

expenses[2]. To reduce the computation and 

improve the performance of the vision processing, 

the motion and structure estimation is used. We 

compute both structure and motion of the helmet 

simultaneously similar to Chai[3] which separates 

the motion estimation and structure estimation into 

two different EKFs. But rather than combining the 

positions of the features into a single large state 

vector, we separate them each other. As a result, a 

bank of EKF is used for structure estimation and 

each EKF uses the position of the feature as a 

state vector.  

The term “motion” refers the position, 

velocity, acceleration, angular velocity and 

orientation of the helmet in the earth frame. We 

will use the term “pose” which refers the position 

and orientation of the helmet. The term “structure” 

refers the 3D positions of the features which are 

the part of the helmet model structure. The helmet 

model structure consists of the 3D location of LED 

features on the helmet. We identify the features in 

the image with comparison of this model structure. 

In this paper, we will present a concept and 

evaluation of how to combine the structure 

estimation and motion estimation with two 

measurement channels. This is done by use of one 

EKF for the motion estimation which fuses the 

vision and inertial data and a filter bank for 

structure estimation. Each sensor system has a 

different measurement equation and the fusion of 

the two measurements is accomplished with 

common dynamic system model. We briefly 

introduce the hybrid helmet tracker system and the 

sensor fusion algorithm with structure and motion 

estimation. And results with synthetic and real 

sensor data will be introduced.  

Hybrid Helmet Tracker System 

The hybrid helmet tracker system consists of 

two infrared CCD cameras (VCC-S70) and infrared 

LEDs attached on the helmet, XSens MTx inertial 

measurement unit(IMU), Matrox Meteor2-MC/4 

frame grabber and a computer for the tracking 

algorithm. Fig 1 illustrates the hybrid helmet tracker 

system. The data from the IMU and the video 

images from the cameras are transmitted to the 

desktop computer through the cables. The video 

images from the two cameras are digitized to a 

resolution of 640x480 pixels. Inertial data sampling 

rate is 100Hz and vision processing rate is 15Hz. 

 

Fig. 1. Composition of Hybrid Helmet Tracker 

Inertial sensors 

The MTx IMU contains 5g MEMS accelerometers 

and 1200 degree/s MEMS rate gyroscopes. MEMS 

sensors are chosen because of their dramatically 

reduced size and low cost as compared to 

alternatives. The signals from the inertial sensors 

are synchronously measured at 100 Hz using a 16 

bit A/D converter. A temperature sensor is added 

to compensate for the temperature dependency.  

The calibrated gyroscope signal 
,ty  contains 

measurements of the angular velocity ,

b

eb t  from 

the body to earth expressed in body coordinate 

system. 

, , ,

b b

t eb t ty e  
            (1) 

The measurements of the MEMS rate 

gyroscope are not accurate enough to pick up the 

rotation of the earth. This means that the earth 

coordinate system can be considered as an inertial 

frame. 

The calibrated gyroscope signal ,ty  contains 

measurements of the angular velocity ,

b

eb t  from 

the body to earth expressed in body coordinate 

system. 

, ,

b b b

a t t a ty b g e               (2) 

Gravity vector is constant in the earth 

coordinate system. But gravity vector in the body 

coordinate system depends on the orientation of 

the sensor unit. This means that we have to know 

the orientation of the sensor unit to estimate the 

acceleration.  



Motion and Structure Estimation Using Fusion of Inertial and Vision Data for Helmet Tracker        33 

 

Stereo Vision System 

From Stereo CCD cameras, gray images with 

a resolution of 640x480 pixels at a frame rate with 

15 Hz are received to a PC using frame grabber. 

Infrared LEDs on the helmet can be seen as a 

white bulb on dark background, because of the use 

of infrared cameras. Extracting the features and 

computing the 3D positions of the features is a 

known and well studied in computer vision. The 

key ingredient is to find the correspondence, 

relations between the features found in the two 

images which come from stereo cameras. Using 

two cameras side by side, stereo vision produces 

instantaneous estimation of the 3D position of 

features in the scene. As a result, stereo vision is 

highly effective for segmenting the objects or 

features from a background. The epipolar 

constraint is applied to find the relation between 

the features found in two images and reject outlier 

matches. Fig. 2 describes the epipolar geometry of 

the stereo vision system. The epiploar constraint 

states that if a point p in the image of the left 

camera and a point q  in the image of the right 

camera correspond to the same 3D point in the 

camera coordinate system. They satisfy the 

following equation. 

0T
q Fp

                  (3) 

where F  is the fundamental matrix  that is the 

algebraic representation of epipolar geometry 

between the left and right images, and p , q is the 

homogeneous representation of the position of the 

feature in the image plane. This equation means 

that the point q should have pass through the 

epipolar line defined as Fp in the right image plane. 

By applying this constraint to the stereo image pair, 

outliers are easily rejected and the 3D positions of 

the features on the helmet are estimated easily. 

Fundamental matrix F can be obtained from the 

camera calibration. Bouguet‟s camera calibration 

toolbox is used to obtain the internal parameters of 

each camera and the extrinsic relation between the 

two cameras[4]. 

Coordinate Systems 

When working with a helmet containing 

inertial sensors and LED features and two 

cameras, several coordinate systems have to be 

considered. 

• Earth coordinate system( e ):  

The pose of the helmet is estimated with 

respect to earth coordinate system.  It is fixed to 

earth and the features of the scene are modeled in 

this coordinate system. 

• Camera coordinate system( C ):  

This coordinate system attached to a fixed 

camera. Its origin is located in the optical center of 

the left camera with  z axis  aligned along the 

optical axis. The camera needs image plane ( i ) to 

represent a projective image. This plane is 

perpendicular to the optical axis and is located at 

an offset from the optical center of the camera. 

This offset is called as focal length.  

• Helmet coordinate system( H ):  

This coordinate system attached to a moving 

helmet. The 3D positions of the LED features 

represented in the helmet coordinate system are 

obtained after 3D scanning. These 3D positions 

organize the model structure of the helmet. Body 

coordinate system ( B ) which is the coordinate 

system of the IMU is fixed to helmet coordinate 

system. They are separated by a constant 

translation and rotation.  

 

 

 

 

Fig. 2. Epipolar Geometry of Stereo Vision System 
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Fig. 3. Geometry of Coordinate Systems 

These coordinate systems are used to 

denote geometric quantities in various coordinate 

systems and the relation between the coordinate 

systems. Acceleration and angular velocity vector 

received from the IMU are represented in the body 

coordinate system B . And the 3D positions of the 

LED features from the vision system are 

represented in the camera coordinate system C . 

Fig 3 describes these coordinate systems and their 

relationship. 

Motion & Structure Estimation for 

Sensor Fusion 

Algorithm Overview 

The inertial and vision sensor have 

complementary properties.  Vision processing by 

using structure estimation gives accurate absolute 

pose information at a slow motion, but has 

problems during rapid motion. The IMU provides 

high rate relative pose information regardless of 

the speed of motion, but suffers from a rapid 

accumulated error with elapsed time. By fusing the 

information from the two sensor systems, it is 

possible to obtain robust tracking result. 

Fusing the inertial and vision data is 

possible in several ways. In this paper, the indirect 

method to combine the two types of sensors is 

proposed with the parallel use of structure 

estimation and motion estimation. The vision 

processing using structure estimation can be used 

for error correction of an inertial navigation system 

(INS). This is similar to how global positioning 

system (GPS) are used to correct the accumulated 

error in an INS.  

 

Fig. 4. Flow Chart of the Sensor Fusion Algorithm 

The result of the structure estimation is the 

reliable 3D positions of the LED features on the 

helmet. And then the pose of the helmet is able to 

be obtained from the algorithm which involves with 

the eigen system of the matrix related to unit 

quaternion. This pose information is transmitted to 

the motion estimation filter and is fused with the 

inertial sensor data. Thus, the input from the vision 

system is a directly pose information of the helmet, 

not image points. This helps to simplify the filter 

equation of the motion estimation [5][6].  

The result of the motion estimation is used 

to predict the 2D positions of the feature in the left 

and right image plane. These predictions can be 

used to determine where in the image the LED 

features indexed with helmet model structure are 

to be expected. The term “indexed” means that we 

know what point in the model structure is matched 

with the LED feature in the image. As a result, the 

stereo matching and the tracking process of each 

LED feature are performed easily.  Fig. 4 is the 

flow chart of the sensor fusion algorithm. In our 

application, there is no “main” sensor or “aiding” 

sensor. Both vision processing and inertial sensors 

are equivalent in the sense that they provide the 

information about the pose of the helmet.  

Motion Estimation 

The proposed head motion model assumes 

constant angular velocity and translational 

acceleration, implying that acceleration and angular 

velocity are included in the state vector. And 

position and orientation of the helmet are included 

in the state vector. Quaternion is used to describe 

the coordinate transformation between the two 

coordinate systems. We represent the head motion 

with the 16x1 state vector, , , , ,
T

T T T T T
head

 
 

X p v a q ω

where p is the position vector, v is the velocity 

vector, a is the acceleration vector of the  
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helmet represented in  e . q is the quaternion 

representing the orientation of  H with respect to 

 e  (this can avoid the jump from 2  to 0  by using 

Euler angles) and ω is the angular velocity around 

the body coordinate system axis. The discretized 

dynamic system model is represented as follows. 

2 3

1
2 6

e e e e e
k k k k k

t t
t

 
    p p v a j

     (4.a)
 

2

1
2

e e e e
k k k k

t
t


   v v a j            (4.b) 

1
e e e
k k kt   a a j                (4.c) 

1 ( 1| ) exp
2

Be Be Be
k k kk k




 
     

 
q q q q

  
(4.d)

 

1
B B B
k k kt  ω ω α              (4.e) 

where t  is the time interval between the 

measurements, 21

2

B B
k k kt t    θ ω α and exp denote 

the the quaternition exponential map defined by 

Ude (1999) as follows[7]. 

3 1

cos( )

, 0
sin( )

exp( )

1
, 0



 
 

 
   

    

r

rr
r

rr

r
0

        (5) 

The system noise is composed of jerks e
kj  and 

angular acceleration B
kα . The advantage of this 

formulation is that all entries of system noise  are 

dependent on the time interval t  and the 

infulence of noise will change with the time 

between the two measurements. If the entries of 

the process noise is independent on the time, the 

system noise  will not change and the noise will be 

too low or too high at the worst case. 

We have the two types of measurement , one 

is from the inertial system and the other is from 

the vision system. Each type of sensor system has 

associated with the each measurement models. The 

relationship between the state and the 

measurement of the inertial system is as follows. 

   *
, , ,

Be e e Be B Be e e B
a k k k k a k k k a kg g     y q a q e R a e

(6)
 

, , ,
b b

k eb k k  y e                (7) 

Note that the rotation matrix be
kR  is constructes 

from be
kq . The relationship between the state and 

the measurement from the vision processing is as 

follows. 

, ,
e e

p k k p kP y e                
(7)

 

, ,
Be

q k k q k y q e
                (8)

 

Because the equation  is linear with the state, it 

can be written as follows: 

   ( )k k k  y H x n  

The matrix H describes the dependency 

between the measurement and the states. Two 

measurement matrices, IH for the IMU and VH  

for the vision system are defined as follows: 

   

3 3 3 3 3 3 3 4 3 3

3 3 3 3 3 3 3 4 3 3

Be

I
    

    

 
  
  

0 0 R 0 0
H

0 0 0 0 I     (9)
 

3 3 3 3 3 3 3 4 3 3

4 3 4 3 4 3 4 4 4 3
V

    

    

 
  
 

0 0 I 0 0
H

0 0 0 I 0   (10)
 

The EKF is used for motion estimation. A block 

diagram of the motion estimation filter is shown in 

Fig.5. The inputs to this filter are the measurement 

of the inertial system and the pose estimation 

result from the vision processing. There is no need 

to synchronize the two measurements. The 

prediction from one measurement to the next 

measurement is performed with the same equation 

independent with the type of measurement. 

Whenever the new measurement is received, it 

updates thestate regardless of whether the type of 

measurement is inertial or vision, and is fused in 

motion estimation filter[8]. 

Structure Estimation 

The helmet model structure of the helmet 

consists of „L‟ 3D points which represent the LED 

features on the helmet, and the structure from the 

image is represented by „N‟ reliable 3D points. N is 

the number of LED features tracked in the image 

sequence. In this paper, the helmet structure is 

estimated by a bank of simple EKF. Each filter has a 

3x1 state vector, , , ,
T

C C C
i structure i i ix y z 

 
X , which is 

the 3D position of the LED feature represented in 

the camera coordinate frame. Even though new 

features appear or some features disappear in the 

scene, proposed structure estimation algorithm can 

track the features robustly. As you can see in 

Algorithm 1, we start with the computation of the 

predicted 2D positions of the helmet structure in the 
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image based on the result of the motion estimation 

filter. Second, we find the predicted point which is 

nearby the feature point segmented from input image 

under certain threshold and match the feature point 

with the points in the model structure. Line 2 

provides what points of the model structure are in the 

left and right image. As a result, we can match the 

points in the two image plane if they are related with 

the same structure point. The 3D positions of the 

features indexed with the model structure are 

obtained by structure estimation. Line 4 is the pose 

estimation process by using the algorithm which 

involves with the eigen system of the matrix related 

to unit quaternion[9]. And then the pose estimation 

results are transmitted to the motion estimation filter.  

 

 

Fig. 5. Block Diagram of the Motion Estimation Filter 

Algorithm 1. Vision Processing Algorithm  with Structure Estimation 

1. Compute , 1, 2, ,, , ,i i i
L Backprojeted L L n L

  
 

X x x x , 1, 2, ,, , ,i i i
R Backprojeted R R n R

  
 

X x x x

which are the predicted 2D points of the helmet structure in the left and right 

image from the motion estimation filter. n is the number of the structure 

points. 

2. Find the correspondence between the points of the LED features 

 1 2, 1, 2, , , 1, 2, ,, , , , , , ,i i i i i i
L input L L m L R input R R m R

      
   

p p p p p p p p  in the input image 

and the predicted points from 1  , ,,L Backprojeted R BackprojetedX X . See Fig.6 

(a) Find the predicted point which has the minimum distance from the 

feature point. Check the threshold and the minimum distance. 

(b) Find the correspondence between ,j L
i

p  and ,k R
i

p which are matched to 

the same structure point. 

3. Estimate the structure of the helmet. 

(a) Compare the previous structure and the current structure. 

(b) If the structure point is in the both structure, estimate the 3D position of the 

structure point by using the information of the previous estimation.
 
 1kP  

(c) If new structure point is added in the current structure, add a new filter 

and estimate the 3D position with the initial error covariance  iniP . 

(d) If the structure point is discarded, discard the filter which is related with 

the structure point. 

4. Estimate the pose information from the algorithm using the unit quaternion. 

Transmit the information to the motion estimation filter. 
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Fig. 6. Projected model structure (yellow circle)and the segmented features(red *) 

Experimental Results 

Synthetic Data 

We examined the performance of the 

algorithm on purely synthetic data. Three sample 

motion of the helmet were described and the 

synthetic sensor outputs were generated. The 

input images are synthesized by calculating the 

back-projected 2D image point of the helmet 

model structure. And white Gaussian noise is 

added to this data. The inertial data are also 

generated, which has zero mean white Gaussian 

noise. The standard deviation for gyro data is 

0.01 / secrad and the standard deviation for 

accelerometer is 20.02 / secm . 

 

Fig. 7. Synthetic image data: (a) motion1 (b) 

motion2 (c) motion3 

 

The first motion is pure translation of 75mm

along the x axis with constant velocity 75 / secmm

and the second motion is pure rotation of 45

degree about z axis of the earth coordinate system. 

The third motion is complex rotation motion with 

the 3 degree change in roll, 6 degree change in 

pitch and 45 degree change in yaw.  Fig.6 shows 

the synthetic image data for three motions. The 

estimation results are as follows. 

Fig. 7, 8, 9 shows the estimation results of 

each motion sequentially. In the each figure, the 

solid line is the estimation result of sensor 

fusion algorithm, the dash-dot line is the  

 

 

Fig. 8. Motion1 Estimation Result: (a) Orientation 

(b) Position 
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Fig. 9. Motion2 Estimation Result: (a) Orientation 

(b) Position 

estimation result when the vision data is only 

used and the dash line is the reference. We can 

see the estimated result is very close to the 

reference using the sensor fusion algorithm and 

is better than the estimation results when the 

vision data is only used.   

Real Data 

Next we test the algorithm with real image 

data and the real inertial sensor data. With single 

axis rate table, we test the rotation motion with 

real data. The experimental set-up is shown in 

Fig.10(a). The camera calibration is preformed 

using Bouguet ’ s camera calibration toolbox 

(Bouguet 2006). The toolbox uses a pinhole 

camera model with nonlinear radial and tangential 

distortion compensation. The calibration uses 

images of a checkered target in several positions 

and recovers the camera’s intrinsic parameters, 

as well as the extrinsic parameters between two 

cameras as show in Fig. 10(b). The alignment 

between the camera frame and the earth frame is 

performed with the image of checker board similar 

to the camera calibration.  

 

 

Fig. 10. Motion3 Estimation Result: (a) Orientation 

(b) Position 

In the case of real data, the alignment error 

between the camera coordinate systems and earth 

coordinate systems affects the result of the 

estimation as a bias. And the alignment error 

between the body coordinate system and the 

helmet coordinate system affects the inertial 

measurement data. And also, our experimental 

system is not accurate, because we cannot align 

the helmet exactly along the coordinate system 

which is located at the center of rotating plate of 

the rate table. As a result, the reference is not 

accurate as we think.  

The estimation result shows on the Fig.11. 

The solid line is the estimated result and the dash 

line is the reference. The helmet is rotated along 

the z axis with the high angular velocity of 

75deg/ sec . Because we assume the constant 

angular velocity model, the error increases when 

the angular velocity is changed suddenly, 

especially at roll and pitch estimation result. But 

the result of yaw estimation result is accurate. The 

position estimation result shows the origin of the 

helmet moves on the circle, because the alignment 

error of the helmet origin and the center of rotation. 

But the result of z  axis is accurate. 
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Fig. 11. (a) Experimental set-up (b) Alignment (c) 

Camera Calibration 

 

Fig. 12. Real Data Estimation Result: (a) Orientation 

(b) Position 

Although the filter converges for real data, 

the errors are larger than for synthetic image data. 

Another reason for larger error especially in the 

roll and pitch is probably due to increase of errors 

in vision processing. When we rotate the head 

along the z  axis, some points disappear and 

appear suddenly. This increases the error of the 

structure estimation. And the error of the depth on 

the projective reconstruction affects roll and pitch 

more than yaw. 

Conclusion 

We proposed a sensor fusion algorithm that 

includes motion estimation of the pose of user‟s 

head and structure estimation of the 3D positions 

of helmet structure. The structure estimation 

reduces the computation time and improve the 

performance in vision processing. . We do not 

address the many other problems in detail, such as 

computing the initial pose for motion estimation and 

calibration. We experimentally found the good 

estimation result with synthetic data and the real 

data. But the sensor fusion algorithm can be more 

advanced by the adaptive technique for the type of 

motion, because optimal filter parameters for slow 

and fast motion are little different. And another 

shape of helmet structure will be tested to reduce 

the errors in the roll and pitch. 
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